

GP120R150T6


Drain (D)

Source (S)

P2P

regulator

N-channel 1200V 10A GaN Power HEMT in TO263-5 Package

- Outstanding switching performance
- Low Profile

.

Upgraded P2P GaN with input regulator IC to match input lead and voltage of existing SiC MOSFET

Applications

- Switching Power Applications
- Server and Telecom Power Application
- EV OBC and DC-DC Converters UPS, Inverters, PV

Description

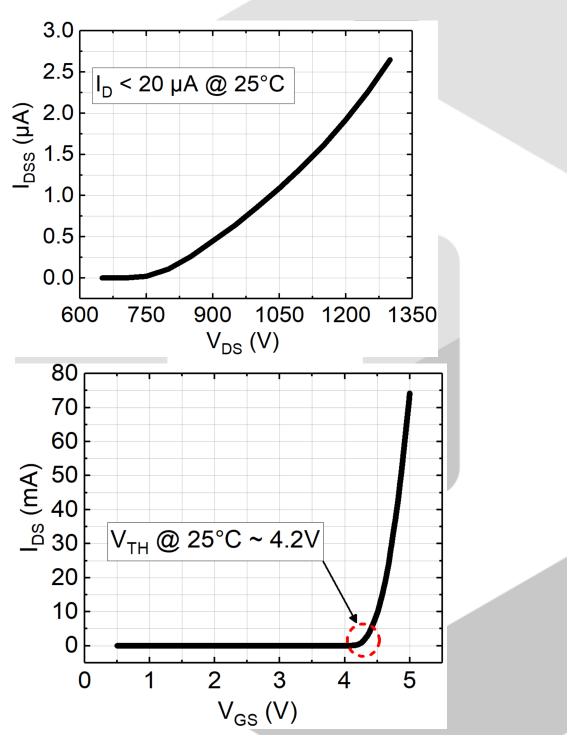
These devices are N-channel 1200V Power GaN HEMTs based on proprietary E-mode GaN on silicon technology, integrating an input regulator circuit to match input lead and voltage of existing SiC MOSFET in a pin-to-pin (P2P) fashion. The resulting product has extremely low on-state resistance, very low input capacitance and zero reverse recovery charge, making it especially suitable for applications which require superior power density, ultra-high switching frequency and outstanding efficiency.

For more information, visit us at: www.iganpower.com, or contact us at sales@iganpower.com

Gate (G) -

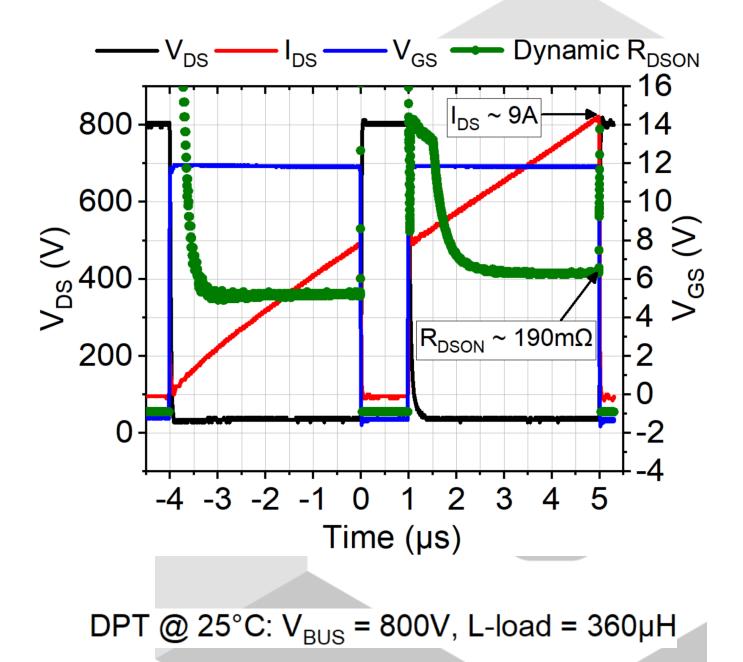
(KS)

Kelvin Source


Device Characteristics

Basic Parameters				Test data			
	Parameters		Conditions	Min	Typical	Max	Unit
1	V _{GS(TH)}	Zero gate voltage drain current, $T_c = 25^{\circ}C$	$V_{DS} = V_{GS}$ $I_D = 3mA$	3.7	4.0	4.2	V
2	BV _{DSS}	Drain-Source breakdown voltage	V _{GS} = 0V I _D < 20μA		1200		v
3	I _{DSS}	Zero gate voltage drain current, $T_c = 25^{\circ}C$	$V_{GS} = 0V$ $V_{DS} = 1200V$		1.5	2.0	μΑ
4	I _{GSS}	Gate-Source Leakage @ 25°C	$V_{GS} = 12V$ $V_{DS} = 0V$		10	20	mA
5	R _{dson}	Static drain-source on resistance, T _c = 25°C	V _{GS} = 12V		150	200	mΩ
Switching Performance				Test data			
	Parameters		Conditions	Min	Typical	Max	Unit
1	t _{D(ON)}	Turn-on delay time	$V_{DS} = 800V$ $I_{D} = 4.7A$ $V_{GS} = +12V/-1V$ $R_{GON} = 2\Omega$ $R_{GOFF} = 0\Omega$		28		ns
2	t _R	Rise time			94		ns
3	$t_{D(OFF)}$	Turn-off delay time			15		ns
4	t _F	Fall time			22		ns
5	E _{on}	Switching energy during turn-on			203.8		μ
6	E _{OFF}	Switching energy during turn-off			11.2		μJ

For more information, visit us at: <u>www.iganpower.com</u>, or contact us at <u>sales@iganpower.com</u>



Electrical Performance

For more information, visit us at: www.iganpower.com, or contact us at sales@iganpower.com

For more information, visit us at: www.iganpower.com, or contact us at sales@iganpower.com

Package Information

For more information, visit us at: www.iganpower.com, or contact us at sales@iganpower.com

Further Information

Important Notice - Unless expressly approved in writing by an authorized representative of GaNPower, GaNPower components are not designed, authorized or warranted for use in lifesaving, life sustaining, military, aircraft, or space applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage. The information given in this document shall not in any event be regarded as a guarantee of performance. GaNPower hereby disclaims any or all warranties and liabilities of any kind, including but not limited to warranties of non-infringement of intellectual property rights. All other brand and product names are trademarks or registered trademarks of their respective owners. Information provided herein is intended as a guide only and is subject to change without notice. The information contained herein or any use of such information does not grant, explicitly, or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. All rights reserved.

Data Source – Data here are based on recent tests but all parameters may not be up to date. Actual final test data from packaging production are available for selected customers upon request.