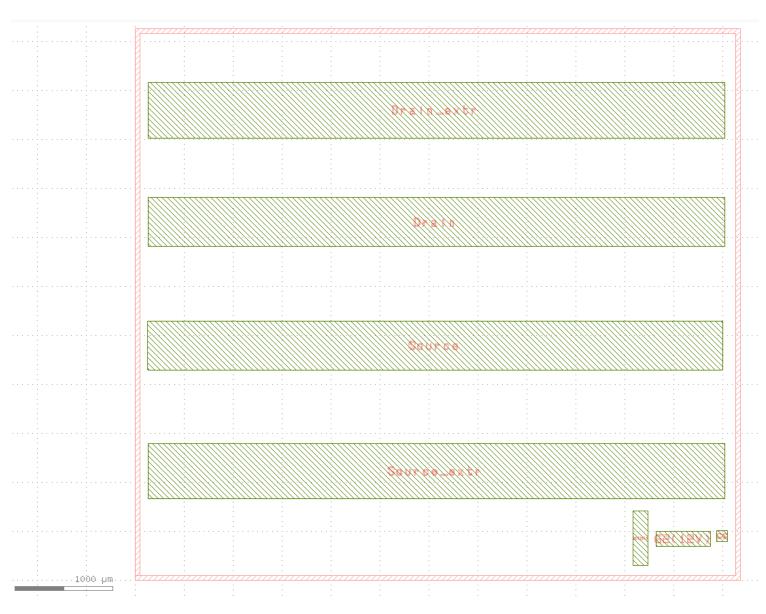


Wafer datasheet Bluesky-p2p120v2 Bluesky-3g120 (900V/120A)

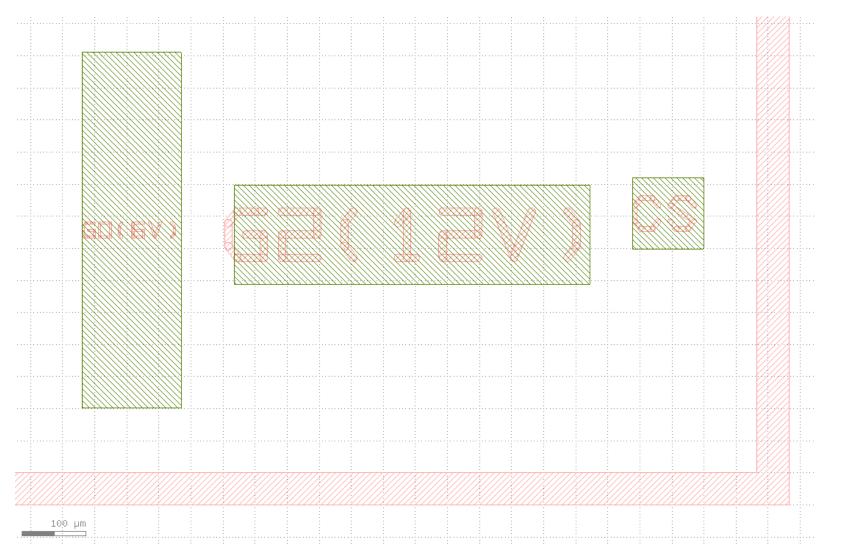
Features


GaNPower innovative all-GaN-IC enables 3.8V turn-on voltage and +/-20 V regulated gate driving. Enhanced system reliability and compatibility with conventional gate drivers.

Regulated gate driving enables anti-ringing Protection / ESD protection

Lossless source side current sensing

p2p120v2 6182.60 5634.28

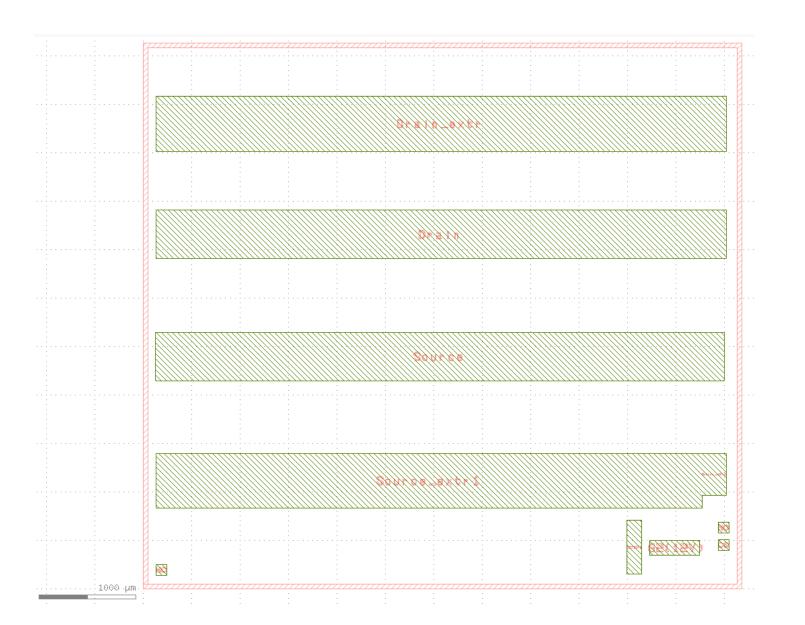


Device-name x-size y-size

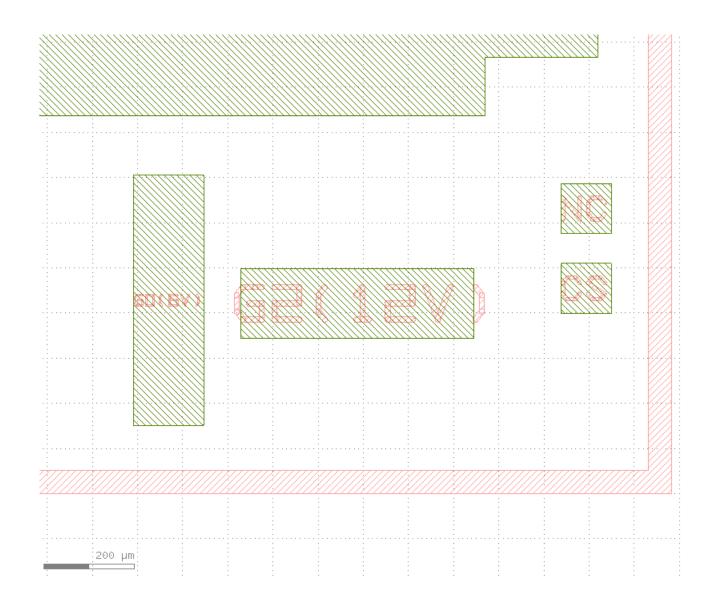
Ganp

p2p120v2 6182.60

0 5634.28



p2p120v2				
PAD	Dx	Dy	Center_x	Center_y
Source	5868.47	500.00	3062.04	2397.14
Source_extr	5889.47	560.00	3074.54	1116.70
Drain	5889.47	500.00	3074.54	3657.14
Drain_extr	5889.47	567.00	3074.54	4799.98
cs	111.00	111.00	5993.77	454.30
G0(6V)	155.00	555.00	5157.70	428.30
G2(12V)	585.00	185.00	5594.95	421.30



Device-namex-sizey-size3g1206182.605634.28

Device-namex-sizey-size3g1206182.605634.28

Device-namex-sizey-size3g1206182.605634.28

3g120				
PAD	dx	dy	center_x	center_y
Source	5868.47	500.00	3062.04	2397.14
Source_extr1	5639.47	561.00	2949.54	1117.20
Source_extr2	250.00	431.00	5894.27	1182.20
Drain	5889.47	500.00	3074.54	3657.14
Drain_extr	5889.47	570.00	3074.54	4798.48
cs	111.00	111.00	5993.77	454.30
GØ(6V)	155.00	555.00	5068.90	428.30
G2(12V)	585.00	185.00	5506.15	421.30
NC	111.00	111.00	5993.77	631.30
NC	111.00	111.00	188.88	196.30

Basic specifications

Back metal	None
Front metal	AlCu 4um
Wafer diameter	6 inch
Wafer thickness before dicing	1000 um
Recommended die thickness after dicing	250-300um
Street width	80 um
Recommended storage	N2 environment

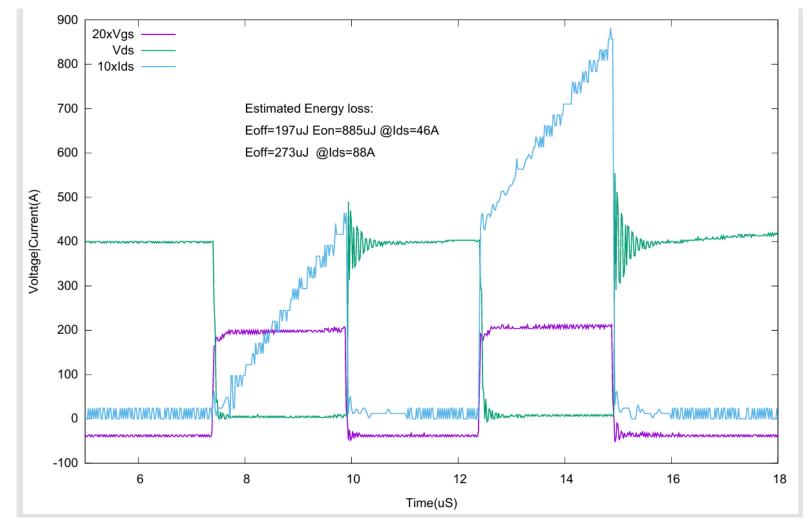
Wire bonding suggestion GanPOwer

Larger pads use 10mil or 12mil Al.

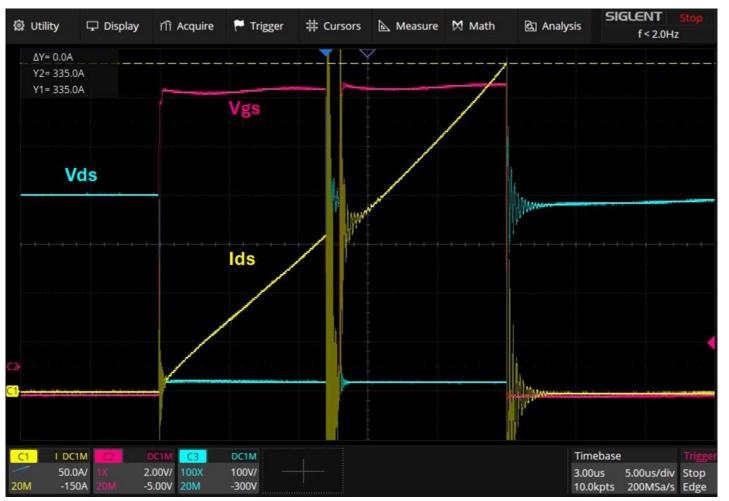
Smaller pads use Cu, PdCu, or Au (1.5 mil – 2 mil)

Backside must be glued to backplate using conductive glue

Backplate must be connected to the source of the GaNFET using wire bonding

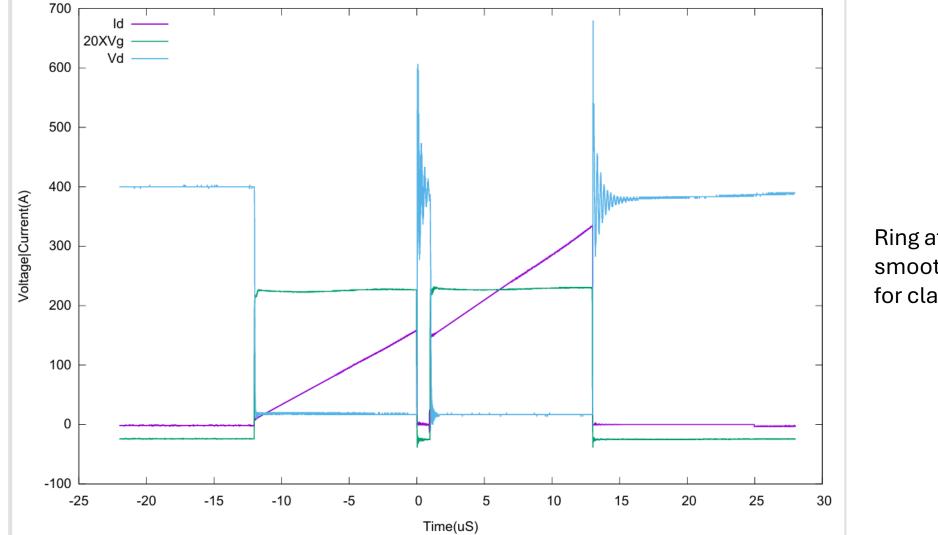

Characteristics

		Condition	min	typical	max	
lds-max	Max current at 125C	Vgs=6/15 125C		120		А
lds-max	Max current at 25C	Vgs=6/15 25C		240		А
Vds-max	D-S breakdown voltage	Vgs=0 25C < 10uA		900		V
Vg0s	Original gate voltage		-3		7	V
Vg1s	Regulated		-20		20	
Vgth (G0)	Gate threshold voltage	Vgs=Vds Ids=35mA		1.3		V
Vgth (G1)	Regulated threshold	Vg1s=Vds Ids=35 mA		3.5		V
ldss	Drain leakage	Vg1s=0/Vg0s=0 25C Vds=900			100	uA
lgss	Forward gate leakage	Vg0s=6/Vg1s=15 Vds=0			1/150	mA
Rdson	On resistance	Vg0s=6/Vg1s=15 lds=1A 25C		12		mOhm
Rdson	On resistance	Vg0s=6/Vg1s=15 lds=1A 150C		26		mOhm
Vcs	Current sensing	lds=+/-120A	-2.5		2.5	V
Qg	Gate charge	Vbus=500V Turn-off from Ids=120A Vg0s from 6 to 0 25C		29		nC


Double pulse testing

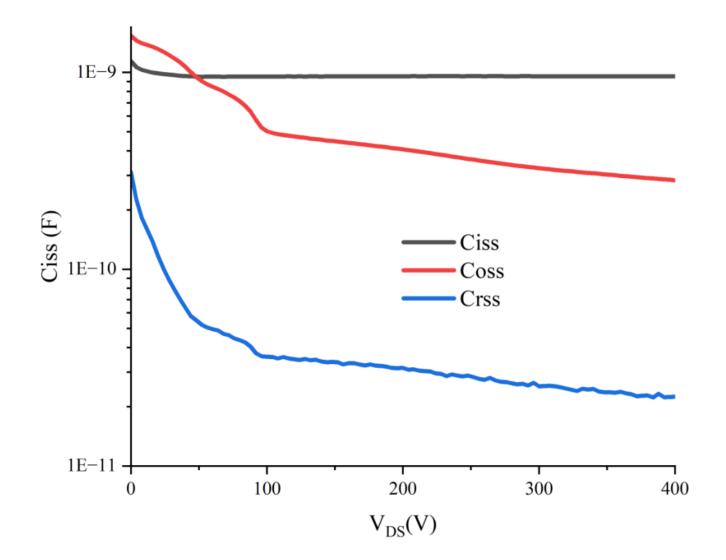
Double pulse testing for bare die packaged within TO247-4. Rgon=10 Rgoff=0. Vg from -2 to 10. Peak to peak averaging method were used for Ids(t) to remove some strong ringing near switching edge in order to estimate Eon/Eoff.

Double pulse testing (3-parallelized TO247-4)



Double pulse testing for bare die packaged within TO247-4. Rgon=2 Rgoff=0. Vg from -1 to 12.

Double pulse testing (3-parallelized TO247-4)



Double pulse testing for bare die packaged within TO247-4. Rgon=2 Rgoff=0. Vg from -1 to 12. Eoff and Eon at 168A are 600uJ and 2350 uJ, respectively. Eoff at 335A is 700 uJ.

Ring at Id smoothed out for clarity.

Capacitance at 1MHz in TO247-4

Application note on G1 (15V) driving

Negative Gate Turn-off

As with most EMODE GaNFET, it is best to use negative turn off gate driving to achieve fast turn off. In such a case, G0 can be left not connected (NC). Negative gate voltage of -1 to -3 are recommended.

GaNP

Zero Gate Turn-off

When using G1 for driving (either 0-12V or 0-15V), it is best to wire bond a bare die of low voltage diode (max rating 20V, max current 0.5A) between G0 and G1 such that the forward direction of the diode points from G0 to G1. Caution: at light loading (less than 0.5A), turn-off may be slow.

Recommended Rgoff=0 Rgon=0 to 5 Ohm. Recommended driver: 1EDBX275F, or other driver with stronger current capability. It is also possible to drive multiple devices/dies at parallel. When parallelizing more than three Star120, paralleled multiple-driver is recommended.

Application note on G0 (6V) driving

G0 can be used as a standard EMODE p-GaN gate. Recommended Rgoff=0 Rgon=5-10 Ohm

Choice of G1 or G0: For better system reliability, G1 is recommended.