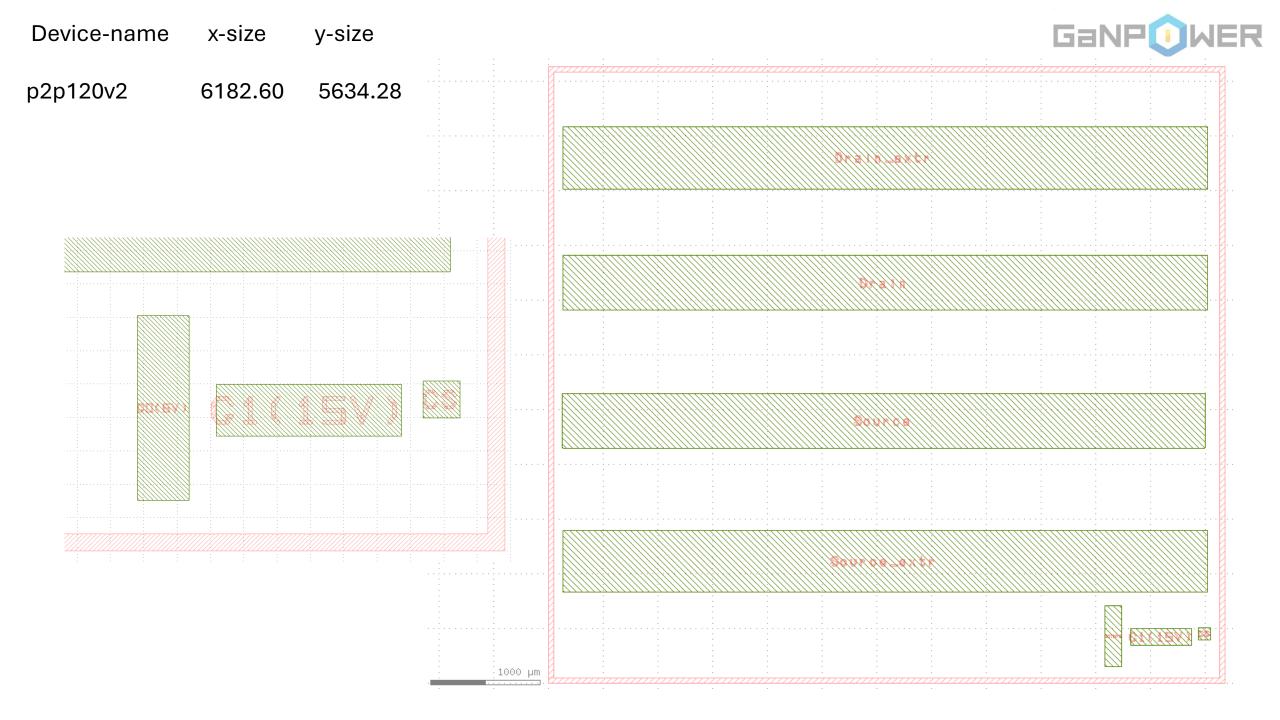


Wafer datasheet Bluesky-p2p120v2 (900V/120A) (650V/120A)



Features

Choice of original 6V gate driving or 0-12 or 0-15V regulated gate driving

Regulated gate driving enables anti-ringing Protection / ESD protection

Lossless source side current sensing

Pad	Dx	Dy	Center_x	Center_y
Source	5868.47	500.00	3062.04	2397.14
Source_extr	5889.47	560.00	3074.54	1116.70
Drain	5889.47	500.00	3074.54	3657.14
Drain_extr	5889.47	567.00	3074.54	4799.98
CS	111.00	111.00	5993.77	454.30
GØ(6V)	155.00	555.00	5157.70	428.30
G1(15V)	585.00	185.00	5594.95	421.30

Basic specifications

Back metal	None		
Front metal	AlCu 4um		
Wafer diameter	6 inch		
Wafer thickness before dicing	1000 um		
Recommended die thickness after dicing	250-300um		
Street width	80 um		
Recommended storage	N2 environment		

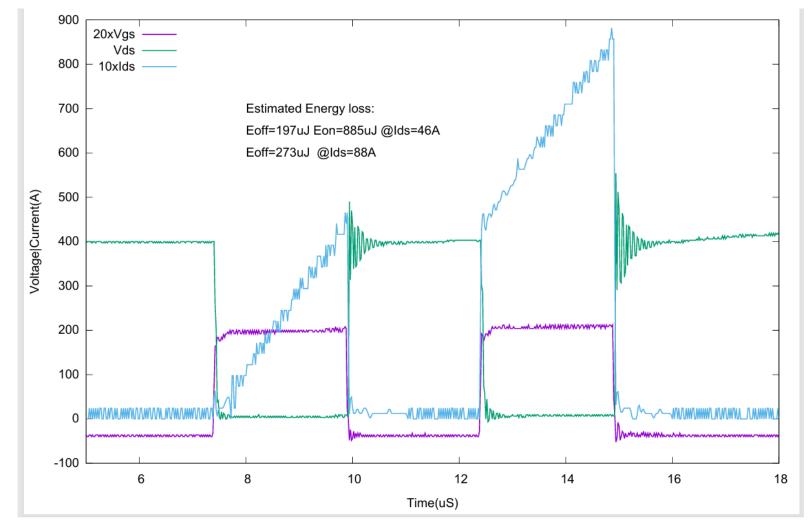
Wire bonding suggestion GanPOwer

Larger pads use 10mil or 12mil Al.

Smaller pads use Cu, PdCu, or Au (1.5 mil – 2 mil)

Backside must be glued to backplate using conductive glue

Backplate must be connected to the source of the GaNFET using wire bonding


Characteristics

		Condition	min	typical	max	
lds-max	Max current at 125C	Vgs=6/15 125C		120		А
lds-max	Max current at 25C	Vgs=6/15 25C		240		А
Vds-max	D-S breakdown voltage	Vgs=0 25C < 100uA		900		V
Vg0s	Original gate voltage		-3		7	V
Vg1s	Regulated		-20		20	
Vgth (G0)	Gate threshold voltage	Vgs=Vds Ids=35mA		1.3		V
Vgth (G1)	Regulated threshold	Vg1s=Vds Ids=35 mA		3.5		V
ldss	Drain leakage	Vg1s=0/Vg0s=0 25C Vds=900			100	uA
lgss	Forward gate leakage	Vg0s=6/Vg1s=15 Vds=0			1/150	mA
Rdson	On resistance	Vg0s=6/Vg1s=15 lds=1A 25C		12		mOhm
Rdson	On resistance	Vg0s=6/Vg1s=15 lds=1A 150C		26		mOhm
Vcs	Current sensing	lds=+/-120A	-2.5		2.5	V
Qg	Gate charge	Vbus=500V Turn-off from Ids=120A Vg0s from 6 to 0 25C		29		nC

Double pulse testing

Double pulse testing for bare die packaged within TO247-4. Rgon=10 Rgoff=0. Vg from -2 to 10. Peak to peak averaging method were used for Ids(t) to remove some strong ringing near switching edge in order to estimate Eon/Eoff.

Application note on G1 (15V) driving

When using G1 for driving (either 0-12V or 0-15V):

Best to wire bond a bare die of low voltage diode (max rating 20V, max current 0.5A) between G0 and G1 such that the forward direction of the diode points from G0 to G1.

G1 comes with ESD protection and anti-ringing protection.

Recommended Rgoff=0 Rgon=0 to 5 Ohm.

Application note on G0 (6V) driving

G0 is unprotected against ESD at this version and can be used as a standard EMODE p-GaN gate. Recommended Rgoff=0 Rgon=5-10 Ohm