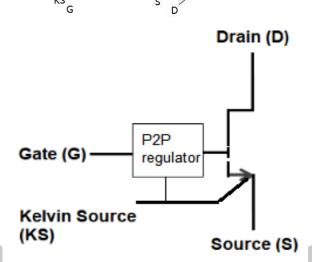


GP120R60T4

N-channel 1100V 30A GaN Power HEMT in TO247-4 Package

Datasheet version 1.0 Preliminary

Features


BV	dss	R _{dson}	lds	$Q_{\rm g}$	Vœ	Vgs(TH)
1100	0 V	60 mO	30 A	8.25 nC	-20 to 20V	2.7 V

- Ultra-low RDS(on)
- High dv/dt capability
- Extremely low input capacitance
- Zero Qrr
- Outstanding switching performance
- Low Profile
- Upgrated P2P-GaN with input regulator IC to

to match input lead and voltage of existing SiC MOSFET

Applications

- Switching Power Applications
- Server and Telecom Power Application
- EV OBC and DC-DC Converters UPS, Inverters, PV

Description

These devices are N-channel 1100 V Power GaN HEMTs based on proprietary E-mode GaN on silicon technology, integrating an input regulator circuit to match input lead and voltage of existing SIC MOSFET in a pin to pin fashion. The resulting product has extremely low on state resistance, very low input capacitance and zero reverse recovery charge making it especially suitable for applications which require superior power density, ultra-high switching frequency and outstanding efficiency.

Device Characteristics

Sta	Static Parameters				Test d	ata	
	Parameters		Conditions	Min	Typical	Max	Unit
1	$V_{gs(TH)}$	Gate threshold voltage	$V_{ds}=V_{gs}$, $I_d=21$ mA $(T_J=25$ °C)	1.5	2.7	4	V
2	V _{GS} ¹	Gate-Source voltage range		-20		20	V
3	BV _{dss²}	Drain-Source breakdown voltage	V_{gs} =0V, I_{d} < 1 mA (T_{J} =25 °C)		1100		V
4	l _{dss}	Zero gate voltage drain leakage current	$V_{gs} = 0V, V_{ds} = 1100V$ $T_{J} = 25^{\circ}C$		250	950	μΑ
5	I _{gss}	Gate-Source Leakage	$V_{gs} = 6V$, $V_{ds} = 0V$		0.7	30	mд
6	R _{dson}	drain-source on resistance	V_{gs} =6.5V, I_d =6A T_J =25°C		42	60	mΩ
7	V _{sd}	Reverse conduction voltage	I _{sd} =0.5A, V _{gs} =0V	1.2	2.0	3	V
8	R _g	Gate resistance	f=25Mhz Open drain		1.5		Ω
Dyr	namic Paramet	ers		Test data			
	Parameters		Conditions	Min	Typical	Max	Unit
1	C _{ISS}	Input capacitance	V _{gs} = 0 V		236		pf
2	Coss	Output capacitance	V _{ds} = 700 V		72		pf
3	C _{RSS}	Reverse transfer capacitance	f = 1MHz		4.6		pf
4	Qg	Gate charge	Vds = 400V		8.25		nC
5	Q _{gs}	Gate to source charge	Id = 9A		1.5		nC
6	Q _{gd}	Gate to drain charge	Vgs = 6V		1.8		nC
7	Q _{rr}	Reverse recovery charge			0		nC
Swi	Switching Performance			Test data			
	Parameters		Conditions	Min	Typical	Max	Unit
1	t _{d(on)}	Turn-on delay time	V _{ds} = 800V		34		ns
2	t _r	Rise time	I _d = 15A		26		ns

¹ A wider range of gate driving from-20V to 20V can be accepted, but recommended range is still -3V to 6V. Wider range protects the gate from damage, but at some cost of power loss.

² BV_{dss} refers to DC withstanding voltage. This product is recommended for DC bus voltage of 800-1000V.

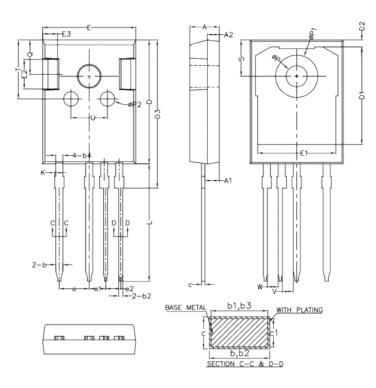
GaNPower International Inc.

3	t _{d(off)}	Turn-off delay time	$R_g = 10\Omega$	33	ns
4	t _f	Fall time	$V_{gs} = -3/6.5V$	20	ns

Absolute Max. Ratings

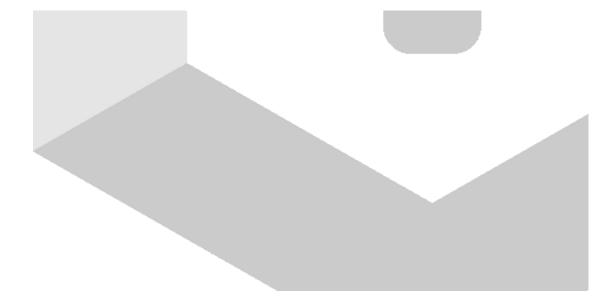
	Symbols	Parameters	Value	Unit
1	$V_{\text{DS-max}}$	Breakdown voltage transient @ T _{case} =25 C	1100	V
2	V_{DS-max}	Breakdown voltage transient @ T _{case} =125 C	1000	V
3	V_{GS-max}	Gate to source max. voltage @ T _{case} =25°C	-12 to +7.5	V
4	ds- <mark>max</mark>	Drain to source pulse current @ Tcase=25 $^{\circ}$ C, pulse width 10 μ s, V_{GS} = 6 V	30	A
5	Drain to source pulse current @ T _{case} =150 C		22	А
6	dv/dt _{-max}	Drain to source voltage slew rate	200	V/ns
7	T _{J-max} Max junction temperature		150	°C
8	$T_{S\text{-storage}}$	Storage temperature	-55 to 150	°C

Thermal and Soldering Characteristics (Typical)


	Symbols	Parameters	Value	Unit
1	R _{thJC}	Thermal resistance (junction to case)	0.6	°C/W
2	R _{thJA}	Thermal resistance (junction to ambient)	62	°C/W
3	T_{solder}	Reflow soldering temperature	250	°C

Ordering

Order Code	Package Type	Packaging Method	Qty
GP120R60T4	TO274-4 surface mount, bottom cooled	3	



Package Information

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)					
SYMBOL	MIN	NOM	MAX		
A	4.90	5.00	5.10		
A1	2.31	2.41	2.51		
A2	1.90	2.00	2.10		
Ь	1.16	-	1.29		
ь1	1.15	1.20	1.25		
b2	0.66	-	0.79		
b3	0.65	0.70	0.75		
b4	1.16	-	1.29		
С	0.59	_	0.66		
c1	0.58	0.60	0.62		
D	20.90	21.00	21.10		
D1	16.25	16.55	16.85		
D2	1.05	1.20	1.35		
D3	24.97	25.12	25.27		
E	15.70	15.80	15.90		
E1	13.10	13.30	13.50		
E2	4.90	5.00	5.10		
E3	2.40	2.50	2.60		
е	4.98	5.08	5.18		
e1	2.69	2.79	2.89		
e2	2.44	2.54	2.64		
K	0	-	0.20		
L	19.80	19.92	20.10		
P	3.50	3.60	3.70		
P1	_	-	7.40		
P2	2.40	2.50	2.60		
Q	5.60	_	6.00		
S	6.00	6.15	6.30		
T	9.80	-	10.20		
U	6.00	-	6.40		
V	1.44	1.84	2.24		
W	1.44	1.84	2.24		

NOTES: 1.ALL DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. 2.EJECTION MARK DEPTH 0.10^{+0.15}_{-0.08}.

Further information

Important Notice-Unless expressly approved in writing by an authorized representative of GaNPower, GaNPopwer components are not designed, authorized or warranted for use in lifesaving, life sustaining, military, aircraft, or space applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage. The information given in this document shall not in any event be regarded as a guarantee of performance. GaNPower hereby disclaims any or all warranties and liabilities of any kind, including but not limited to warranties of non-infringement of intellectual property rights. All other brand and product names are trademarks or registered trademarks of their respective owners. Information provided herein is intended as a guide only and is subject to change without notice. The information contained herein or any use of such information does not grant, explicitly, or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. All rights reserved.

Data Source— Data here are based on recent tests but all parameters may not be up to date. Actual final test data from packaging production are available for selected customers upon request.

