

GaNPower Half-Bridge(HB) Buck/Boost EVB 1.3

Technical Manual

June 2023
By Daniel, Oliver, Spencer

Contents

1	HB Buck/Boost Evaluation Board Overview				
2	Overview of HB Buck/Boost EVB	_			
	2.1 Schematic	4			
	2.2 Bill of Materials	5			
3	Quick Start Guide	ost EVB 4			
4	Evaluation Results				
	4.1 Waveforms	7			
	4.2 Efficiency	10			

1 HB Buck/Boost Evaluation Board Overview

Figure 1: GaNPower Evaluation Board Top View

Figure 2: GaNPower Evaluation Board Bottom View

2 Overview of HB Buck/Boost EVB

2.1 Schematic

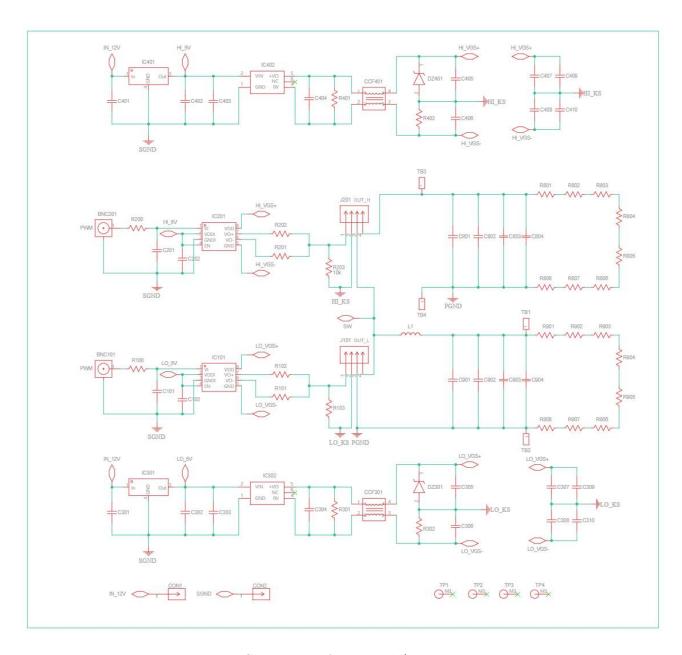


Figure 3: Schematic of HB Buck/Boost 1.3 EVB

Bill of Materials 2.2

#ITEM	Designator	Value	Description
1	BNA1-2	BNA Socket	12V Input
2	BNC101/BNC201	BNC Socket	PWM Input
3	TB1-4	1P Socket	Terminals for Buck/Boost
4	J101/J201	4P Socket	GaN Terminal
5	C803/C903	10u HV	Film Capacitor
6	R801-808/R901-908	$1 \mathrm{M}\Omega$	SMD Resistor
7	L1	650uH	Power Inductor
8	R100/R200	300Ω	SMD Resistor
9	R101/R201	Ω	SMD Resistor
10	R102/R202	10Ω	SMD Resistor
11	R103/R203	$10 \mathrm{k}\Omega$	SMD Resistor
12	R301/R401	$47\mathrm{k}\Omega$	SMD Resistor
13	R302/R402	$1 \mathrm{k}\Omega$	SMD Resistor
14	C101/C201	-	No Connection
15	C102/C202	0.1u	MLCC
16	C307-308/C407-408	0.1u	MLCC
17	C301/C401	0.33u	MLCC
18	C302/C402	1u	MLCC
19	C303-306/C403-406	4.7u	MLCC
20	C309-310/C409-410	10u	MLCC
21	DZ301/DZ401	6V2	Zener Diode
22	CCF301/CCF401	-	Common Mode Choke
23	IC101/IC201	-	Gate Driver
24	IC301/IC401	12V-5V	LDO
25	IC302/IC402	5V-9V	DC-DC

Table 1: Bill of Materials for the GaNPower HB Buck/Boost Evaluation Board

3 Quick Start Guide

The general guidelines for operating the evaluation board are listed below. Follow the steps to configure the hardware properly.

- 1. Set the desired frequency and duty cycle on your function generator.
- 2. Connect your high voltage (0-400V), low voltage (12V), PWM, load, and oscilloscope probes at the indicated locations.
- 3. With just the LV supply turned on, use the oscilloscope to verify the Vgs waveform through the low-side GaN device and compare it to the waveforms below.
- 4. With the function generator off, and the low voltage supply on, set the high voltage supply to 50V and turn it on.
- 5. Enable the function generator and verify the Vds of the GaN device.
- 6. Slowly increase the HV power supply to the desired voltage.

 Note: The slow increase is to prevent a sudden increase in current that would damage the GaN device.
- 7. To turn off, shut down the HV supply first, followed by the function generator, and finally the LV supply.

4 Evaluation Results

The following evaluation data was taken in a buck configuration with a 10μ s period, 50% Duty Cycle for high side, and 40% Duty Cycle for low side. The yellow waveform is the Vgs, and the pink is the Vds of the GaN device.

4.1 Waveforms

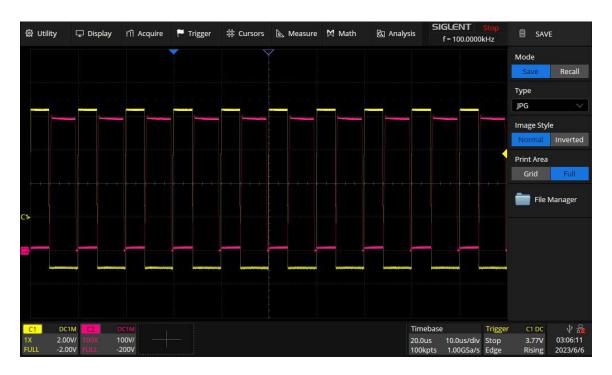


Figure 4: 400V V_{Bus} , 652 Ω Load

Figure 5: 400
V $\mathbf{V}_{Bus},\,39\Omega$ Load

Figure 6: 300
V $\mathbf{V}_{Bus},\,900\Omega$ Load

Figure 7: 200
V $\mathbf{V}_{Bus},\,900\Omega$ Load

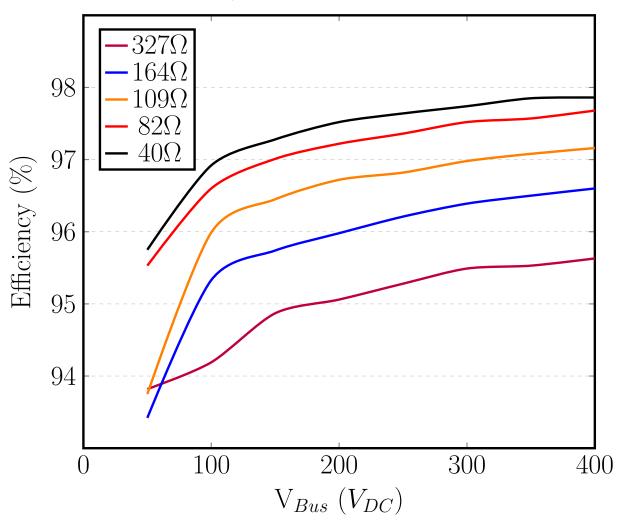
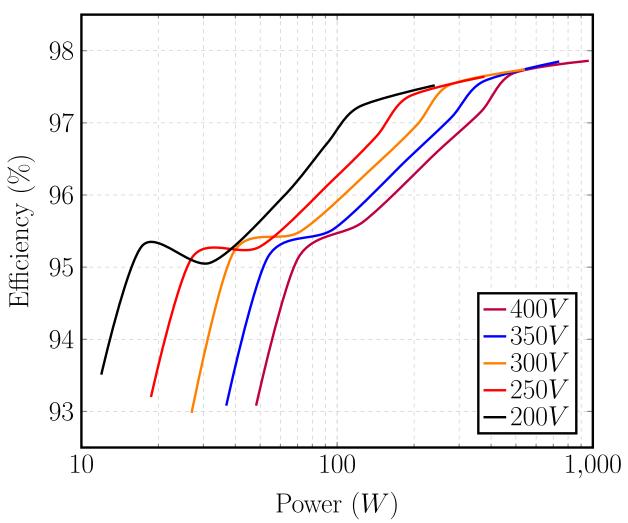


Figure 8: 100
V $\mathbf{V}_{Bus},\,900\Omega$ Load


4.2 Efficiency

Efficiency vs V_{Bus} for Various Loads

