

GaNPower Double Pulse Test (DPT) 1.0 Evaluation Board

Technical Manual

By Ariel, Daniel, Joey

Contents

Double Pulse Test Evaluation Board Overview	3	
Schematic and Details of the DPT Evaluation Board	4	
Quick Start Guide	6	
Double Pulse Test Step-by-Step Guide	7	
Evaluation Regults	Q	

Double Pulse Test Evaluation Board Overview

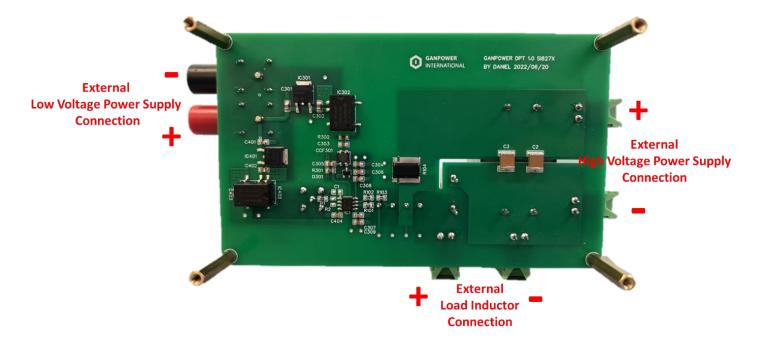


Figure 1 GaNPower Evaluation Board Bottom View

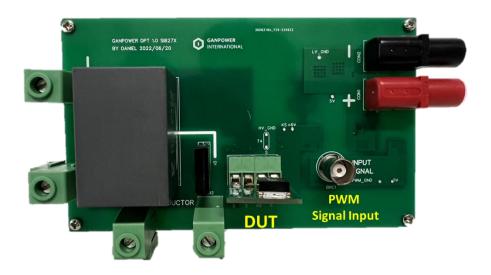


Figure 1 GaNPower Evaluation Board Top View

Schematic and Details of the DPT Evaluation Board

The schematic and the details of each component are provided in Fig. 2 and Table 1.

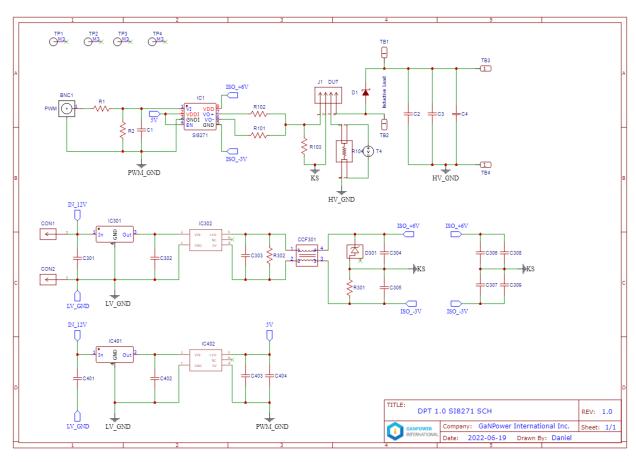


Figure 2. Schematic of GaNPower Double Pulse Testing

Table 1: Bill of Components on the GaNPower DPT Evaluation Board

#ITEM	Designator	Value	Description
1	BNA1-2	BNA Socket	12V input for the board
2	BNC1	BNC Socket	PWM signal input for Vgs
3	TB1/TB2 TB3/TB4	1P Socket	Terminal blocks for load inductor Terminal blocks for Vbus
4	D1	SBD	Free-wheeling Diode
5	C4	10μF	Film Cap
6	R104	5mR	Current Sense
7	IC1	SI8271	Gate Driver
8	R1/	100R	SMD Resistor
9	R101	0R	SMD Resistor
10	R102	10R	SMD Resistor
11	R2/R103	10K	SMD Resistor
12	C1/C306 C307/C404	0.1u	MLCC Cap
13	C2/C3	0.1u	MLCC Cap
14	IC301/IC401	12V to 5V	LDO
15	C301/C401	0.33u	MLCC Cap
16	C302/C303/ C304/C305/ C402	4.7u	MLCC Cap
17	IC302	5V to 9V	DC-DC
18	R302	47K	SMD Resistor
19	CCF301	CCF	Common-mode Choke
20	D301	6.2V	Zener Diode
21	R301	1K	SMD Resistor
22	C308/C309 C403	10u	MLCC Cap

This chapter will guide the user through the evaluation board overview, hardware operation, test setup, and test results.

Evaluation Board Overview

The evaluation board contains:

- Connect both the high voltage (0Vdc < Vin < 1200Vdc) and low voltage (12Vdc) power supplies.
- Always connect the external load inductor
- \bullet Connect the probes for V_{GS} , V_{DS} , I_d measurements, and other performance verifications.

Double Pulse Test Step-by-Step Guide

The general guidelines for operating the evaluation board are listed in this section. Follow the steps to configure the hardware properly.

1. Pre-set the PWM frequency and the duty cycle.

Figure 3. The tested waveform from a RIGOL waveform generator that is used in the following section

- 2. Connect and apply the low-voltage power (Vdc=12V) supply.
- 3. Apply the PWM pulse signal to INPUT SIGNAL (BNC1) and check the Vgs waveform.
- 4. For double pulse measurements, probe the DUT drain (D) and source terminal (S) for Vds measurements and add a current meter at the HV_GND terminal and DUT source terminal (S) for Ids measurements.
- 5. Connect and apply the high-voltage power supply (0Vdc < Vin < 1200Vdc).
- 6. Apply the PWM pulse signal to INPUT SIGNAL (BNC1) and monitor the DUT drain voltage and current.
- 7. After testing, turn off the high-voltage power supply first, then the low-voltage power supply.

Evaluation Results

The double pulse test results in this chapter would be tested on HV30SB5L

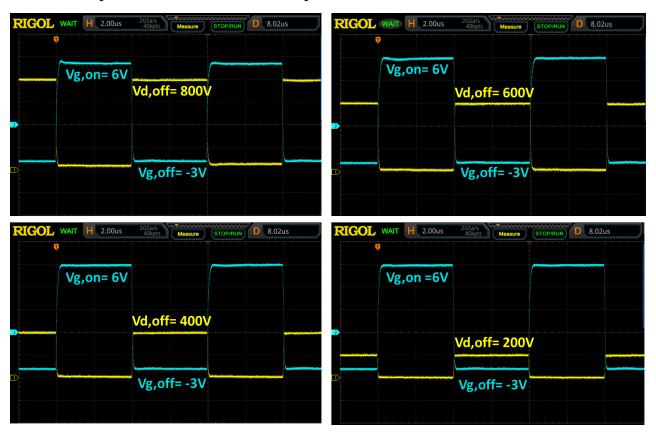


Figure 4. Double Pulse Test Waveform