

GaN Power HEMT Tutorial: GaN Applications

GANPOWER INTERNATIONAL INC (In collaboration with Digiq Power)

Fred Yue Fu (傅玥) Co-founder and COO GaNPower International Inc.

ର୍ବାପ୍ରାର୍ଦ୍

Contents

- ➢ Session 1: GaN devices basics
- ➢ Session 2: GaN Gate Driving
- ➢ Session 3: GaN Applications
 - > GaN vs. Silicon, from Application Perspective
 - ➢ GaN Applications Survey
 - SCC Solution Demos (in collaboration with Digiq Power)
 - A brief introduction to GaNPower International

Rough Comparison: GaN vs. MOSFET

	MOSFET	GaN	Comments
Switching speed	Slower	Faster	Very Good
R _{ds}	Larger	Smaller	Excellent
V _{gs} range	Wider (5- 20V)	Narrower (4.5 to 6.5V)	Bad
Avalanche	Yes	No	Bad
Price	Lower	Higher	Bad

Need new technologies optimized for GaN

- ✓ Take full advantages of GaN device
- ✓ Better Performance at higher / same cost

o'go

MOSFET as a Switch vs. GaN as a Switch

MOSFET used for past 30 years:

- > All the problems ironed out
- > All the lessons learned
- Very well understood
- > Optimal topologies identified
- Application strategies found

30 years ago, initial MOSFET:

- As compared with BJT
- Very sensitive to noise
- ➢ Easy to get damaged
- Similar scenario as the GaN vs MOSFET

GaN as a new device:

- More expensive (-)
- Faster switching speed (++)
- > Lower on resistance value $(R_{ds})(+++)$
- Higher "body diode" voltage ()
- No "body diode" reverse-recovery charge (++)
- ➢ Narrow V_{gs} Range (-)

GaN is Expensive (- - -)

➤ How to justify the higher cost

- ➤ Smaller sizes
- ➤ Higher efficiency
- Something that MOSFET cannot achieve

➢ Need a new eco-system for GaN switch

- ➤ Topology
- > Control
- ➤ Gate drive
- ➢ Package

Faster Switching Speed (+ +)

Good:

- Lower switching loss
- Higher switching frequency

Bad:

- ➢ Large voltage ringing due to L*di/dt
- Coupled to gate signal causing higher GaN loss, even damage
- Increase gate resistor value

Consequence:

- Paramount to reduce AC loop (to reduce L)
- Extensive experience on layout
- Limited improvement for hard switching topology

Lower On Resistance (R_{ds}) (+ + +)

Good:

- Lower conduction loss
- > Allow for higher conduction current

Bad: None

Consequence:

- Resonant converter is more advantageous
- Example: 250 400V, 12V / 500W

Example: 250 – 400V, 12V / 500W

	Conduction Loss	% of P _{out}
PSFB with MOSFET (0.11 Ω)	1.70W	0.34%
LLC with MOSFET (0.11 Ω)	2.75W	0.55%
LLC with GaN (0.05 Ω)	1.25W	0.25%

Higher "Body Diode" Voltage (-)

Good:

≻ None

Bad:

➢ Higher loss when "Body Diode" Conducts

Consequence:

- > Very important for dead time control
- > Different (adaptive) dead time for different conditions
- Reduce the current through the "Body Diode"

No "Body Diode" Reverse-Recovery (+)

➢ Only PWM converter with GaN

Narrow V_{gs} Range (- -)

Good: None

- ≻ 4.5V to 6.5V
- ➢ Reasonable for V_{cc} circuit

Bad:

- ➤ V_{gs} variation due to large L*di/dt
- Common source inductor (L_{cs}) impact

Consequence:

- ➢ Paramount to reduce L_{cs}
- Integrated driver + GaN switch in same die
- \succ Topology not sensitive to L_{cs}

GaN: ZVS and LLC

Zero-Voltage Switching for GaN device:

- ➢ Best operating mode for GaN
- Maximize the benefit of GaN devices
- ➤ Higher switching frequency and low conduction loss

DCM operation for PWM converter:

- > Making the inductor current negative
- Using negative current to achieve ZVS
- ZVS operation of PWM converter

Resonant converter:

- LLC resonant converter
- Achieving ZVS over entire operating range

Why Hard-Switching is not for GaN?

Blue: Super Junction Red: E-mode GaN Both ~70 m Ω R_{dson}

- ✓ Superjunction capacitances are much higher when compared to GaN
- ✓ Superjunction C_{oss} and C_{rss} behave very nonlinearly with voltage

- ✓ Output charge Q_{oss} difference is very large (up to 10x at 100 V)
- ✓ Difference in E_{oss} is much smaller (e.g: 20% at 400 V)

Source: Tim McDonald, GaN in a Silicon world: competition or coexistence? Infineon Technologies, APEC 2016

Why Should We Use ZVS Switching for GaN?

- \blacktriangleright There is no large difference in E_{oss} at 400V for GaN and SJ FET with same rated BV and comparable R_{dson}
- C_{o(tr)} of GaN device is 10x lower than SJ FET, which can be leveraged in ZVS applications where it can result in lower power losses. This benefit grows with frequency (as a fixed deadtime grows in percentage of total switching cycle time)
- Hard switching turn-on loss is much higher than turn-off loss, use ZVS turn-on and fast hard turn-off can optimize the switching loss

Source: Tim McDonald, GaN in a Silicon world: competition or coexistence? Infineon Technologies, APEC 2016

Features of Resonant Converters

Frequency control

- \succ Output voltage determined by ratio of F_s and F_r
- ➢ Around 50% duty cycle with dead time

Zero Voltage Switching (ZVS)

- > ZVS over entire input and output voltage / load current range
- ➤ Very low switching loss
- ➤ L_{CS} is no long an impact

Higher Conduction Loss

- > Higher circulating current through resonant tank
- ➢ Not an issue with GaN's lower R_{dson}

The Topology is Optimized for GaN Devices

ର୍ବାପ୍ରାର୍ଦ୍ୱ

Contents

- ➢ Session 1: GaN devices basics
- ➢ Session 2: GaN Gate Driving
- ➢ Session 3: GaN Applications
 - ➢ GaN vs. Silicon, from application perspective
 - ➢ GaN Applications Survey
 - SCC Solution Demos (in collaboration with Digiq Power)
 - > A brief introduction to GaNPower International

3b

GaN Applications Survey

First use of GaN: 100 V cascode device for class D audio amplifier

Source: Tim McDonald, GaN in a Silicon world: competition or coexistence? Infineon Technologies, APEC 2016

infineon

GaN Applications Survey: Totem-Pole Bridgeless Boost at ZVS

Benefits: Smaller size and high efficiency

Z. Liu, FC Lee, etc, "Design of GaN-Based MHz Totem-Pole PFC Rectifier", JESTPE 2016

© Fred Yue Fu (傅玥), GaNPower International Inc.

Ógq

Si

GaN

ÓGÓ

GaN Applications Survey: Air Conditioning Inverter

GaNPOWER

GaN Applications Survey: 3600W LLC 380V to 52V Converter from Infineon

Moshe Domb, E-Mode GaN ,600V, 0.07Ohm, utilized in 3600W LLC 380V to 52V Converter, Infineon, APEC 2018

GaN Applications Survey: 3600W LLC 380V to 52V Converter from Infineon

CoolMOS requires much longer dead time between primary switches: 350ns compared to 130ns with GaN

The longer dead time for CoolMOS also forces a higher primary & secondary peak current, compared to GaN to deliver the same output current, which causes more loss

Moshe Domb, E-Mode GaN ,600V, 0.070hm, utilized in 3600W_LLC 380V to 52V Converter, Infineon, APEC 2018

o'gio

GaN Applications Survey: Active Clamp Flyback USB-PD Charger from TI and Navitas

- Zero voltage switching (ZVS) is achieved over a wide operating range with advanced auto-tuning techniques, adaptive dead-time optimization, and variable switching frequency control law.
- Using adaptive multimode control that changes the operation based on input and output conditions, UCC28780 enables high efficiency while mitigating audible noise.
- ✓ With a variable switching frequency of up to 1 MHz and accurate programmable over-power protection, which provides consistent power for thermal design across wide line range, the size of passive components can be further reduced and enable high power density.

Source: TI UCC28780 Datasheet

GaN Applications Survey: GaN applications that are in Mass Production: PC Gaming Power

- ✓ The AX1600i uses Transphorm's <u>TPH3205WS 650V FETs</u> in a bridgeless totem-pole power factor correction (PFC)—the topology that complements GaN's performance and efficiency potential.
- ✓ With an increase of 6 percent within this topology, CORSAIR's PSU efficiency now earns a better-than an 80 PLUS[®] Titanium rating.
- ✓ Previous CORSAIR power supplies used Silicon (Si) super junction (SJ) MOSFETs in a 2-phased interleaved PFC, reaching 93 percent efficiency

Source: www.transphormusa.com

GaN Applications Survey:

GaN applications that are in Mass Production: 30W QR Adapters

Source: www.chongdiantou.com

GaN Applications Survey: GaN applications that are in Mass Production: 45W ACF Adapters

- According to the teardown, this 45W power adapter is powered by Navitas NV6115 (650V 170 mΩ) and TI UCC28780 controller)
- ✓ Active Clamp Flyback (ACF) topology is used in this adapter
- ✓ Input: 100 240V; output: 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/2.25A (45W)

Source: www.chongdiantou.com

GaNPOWER

GaN Applications Survey:

Commercially Available Ultra Compact 65W Adapters

65W Adapter	Lenovo ThinkPlus	Delta PowerGear 60C	Finsix Dart	Zolt	Mi CDQ07ZM	RAVPower GaN
Topology	Flyback	Flyback	3-level LLC	ACF	Flyback	QR
Power Switch	si sj mos	si sj mos	si sj mos	SiC	si sj mos	GaN
Size (Exclude Prongs)	35*74*30 mm	30*60*30 mm	28*70*28 mm	88.9*33*33 mm	60*57*28 mm	48 *48*30 mm
Weight	122g	88g	85g	100g	113g	175g
Max Power	20V/3.25A	20V/3A	20V/3.25A	20V/3.5A	20V/3.25A	20V/3A
USB-C/PD	Yes	Yes	No	No	Yes	Yes
Power Density	13.74W/in ³	18.18W/in ³	19.42W/in ³	11.83W/in ³	11.13W/in ³	14.08W/in ³
Date of Introduction	2018.11	2018.5	2016	2016	2018.6	2019
List Price	30 USD	109 USD	99 USD	49.99 USD	20 USD	37 USD
Product Pictures		and a second				

o'gio'

GaN Applications Survey: High Frequency Magnetics

ର୍ବାପ୍ରାର୍ଦ୍ୱ

Contents

- ➢ Session 1: GaN devices basics
- ➢ Session 2: GaN Gate Driving
- ➢ Session 3: GaN Applications
 - ➢ GaN vs. Silicon, from application perspective
 - ➢ GaN Applications Survey
 - SCC Solution Demos (in collaboration with Digiq Power)
 - A brief introduction to GaNPower International

1kW LCLC-SCC* Converter Demo (in collaboration with Digiq Power)

*Switch-Controlled-Capacitor (SCC) is a GaNPower patented technology

Switch-Controlled-Capacitor (SCC) – LLC Converter

By compensating the resonant frequency due to L, C tolerance, Switch-Controlled-Capacitor (SCC) is designed to

- Achieve current sharing and interleaving for LLC
- Reduce the rms current and conduction loss
- \succ Reduce the total system volume with higher switching frequency

o'gio

Switch Controlled Capacitor (SCC)

Solution: Switch Controlled Capacitor (SCC) to equalize the resonant frequencies

Equivalent capacitor value (C_{AB}) depends on the conduction time of S_1

Benefits of SCC Technology

✓ High efficiency at high load current

- > Through parallel operation with current sharing
- ➤ Lower conduction loss
- \checkmark Lower input and output ripple
 - > Through interleaving operation
- ✓ High switching frequency
 - Because of lower current for each phase
- ✓ Achieving both (<u>at same time</u>)
 - ➢ Higher power density
 - ➢ Higher efficiency

Introduction to LCLC Resonant Converter

LCLC Resonant Tank \rightarrow Modified LLC with Changeable L_m

o'go'

LCLC and LLC Efficiency Comparison

Much higher efficiency at 400V for LCLC

o'giq

LCLC-SCC Resonant Converter

Design Parameters

Description	Value
Input Voltage	250 – 400 VDC
Nominal input voltage	400 VDC
Output Voltage	12 VDC
Rated Output Current	84 A
Rated Output Power	1 kW
Series Resonant Frequency	320 kHz
Switching Frequency	170 – 240 kHz
Transformer Turns Ratio	18 : 1 : 1 (center tapped)
Resonant Inductor (L _r)	12.8 µH (Phase1) - 12.1 µH (Phase2)
Parallel Inductor (L _p)	230 µH (Phase1) - 223 µH (Phase2)
Resonant Capacitor (C _r)	20 x 1 nF = 20 nF ± 5%
Parallel Capacitor (C _p)	5 x 1 nF = 5 nF ± 5%
SCC Capacitor (Each Phase)	5 x 3.3 nF = 16.5 nF ± 5%
Input Capacitor (Electrolytic)	2 x 68 µF = 136 µF ± 5%
Output Capacitor (Ceramic)	20 x 47 µF = 940 µF ± 5%

ÓGÓ

Prototype with GaNPower HEMTs (TO-220)

Waveforms of Non-Interleaved LCLC-SCC Resonant Converter

V_{in}=250 V - Load=70 A

V_{in}=350 V - Load=80 A

V_{in}=300 V - Load=80 A

V_{in}=400 V - Load=80 A

Waveforms of Interleaved LCLC-SCC Resonant Converter

V_{in}=250 V - Load=70 A

V_{in}=350 V - Load=80 A

V_{in}=400 V - Load=80 A

Output Voltage Ripple of Non-Interleaved LCLC-SCC Converter

 V_{in} =250 V - Load=70 A

V_{in}=350 V - Load=80 A

V_{in}=300 V - Load=80 A

V_{in}=400 V - Load=80 A

Output Voltage Ripple of Interleaved LCLC-SCC Converter

V_{in}=250 V - Load=70 A

V_{in}=350 V - Load=80 A

V_{in}=300 V - Load=80 A

V_{in}=400 V - Load=80 A

Thermal Images of Output Capacitor with Fan Cooling

Non-Interleaved

Interleaved

ଦ୍ୱାପ୍ତାର

Efficiency Curves (with 15 A GaN Power Devices)

1kW LCLC-SCC Converter (15A GaN Power TO-220)

Summary for the 1KW LCLC-SCC Converter

- Small Deadtime is Required for GaN Switches (100ns 200ns)
- ➢ GaN Switches Operate Well for Wide Input Voltage Range
- > TO-220 Package GaNs Work Without Heatsink Under Full-Load
- Perfect Current Sharing is Achieved by SCC Technology
- > Only Ceramic Capacitors are Used at the Output Due to Interleaving
- > Peak Efficiency of 96.3% is Recorded for LCLC-SCC Converter

GaNPower SCC for EV OBC and DC/DC Converter (in collaboration with Digiq Power)

o'gio

SCC Technology for EV OBC with GaN

Requirements:

- ➢ Output power: 3.3kW and 6.6kW
- ➢ Wide input voltage range: 85 − 264V
- Wide output voltage range: 240 430V (battery)
- High output current: 14A for 3.3kW and 28A for 6.6kW

Block diagram of on-board EV charger

EV OBC Current Technology

- First Generation: Diode Bridge + Boost + Phase-Shift Full Bridge (PSFB)
- Efficiency: 92 93%, Power Density: 0.5 0.8 kW / L

Ógiq

EV OBC Current Technology

Bridgeless Boost + LLC Resonant (in production)

- Current technology
- Efficiency: 94% (full load)
- Power Density: ~1 kW / L (16W / in³)

Bridgeless Boost + LLC Resonant (in lab, reported)

- ➤ Using GaN and / or SiC
- ➢ Efficiency: 95.7% (AC − DC: 98.2%, DC − DC: 97.5%)
- Power density: ~1.5 kW / L (24W / in³)

GaNPower SCC EV OBC

Bridgeless Boost PFC + 3-phase Interleaved LCLC (for 3.3kW)

- > AC DC stage: Bridgeless Boost, integrated GaN switches (similar)
- DC DC: 3-phase interleaved SCC LCLC for 3.3kW output (new)

0[']giq

GaNPower SCC EV OBC

SCC – LCLC topology for EV Battery charger

GaNPower SCC GaN Based EV OBC

Advantages

- ➤ -Reduced output capacitor value, from 190uF / 500V to 12uF / 500V
 - ✓ Size reduction from 14 in³ (two 100 μ F / 500V film cap, \$28 x 2 = \$56)
 - ✓ To 1 in³ (one 12uF / 500V, film cap, \$8)
- Better thermal performance (no hot spot)
- –Efficiency: 96.5% (system, full load)
- ➤ -Size: ~ 1.2 Litre for 3.3kW
 - ✓ Power density: 2.5 3 kW / L (40 48W / in³)

GaNPower SCC GaN Based EV DC/DC Converter

Requirements:

- High output power: 2kW
- ➢ Wide Input voltage range: 350V nominal, 240 −430V, from battery
- ➢ Wide output voltage range: 14V nominal, 9 − 16V
 - ✓ Voltage gain variation range: 15 to 48 (> 1:3)
 - ✓ Difficult to meet with LLC converter
- ➢ High load current: 150A
 - ✓ Needs bridge type converter with large inductor as a filter

0[']go

GaNPower SCC GaN Based EV DC/DC Converter

- ➢ Four-phase interleaved SCC − LCLC in parallel
 - ➢ No need for large inductor
 - ➤ 40A each phase (~500W) to reduce the conduction loss
 - Interleaving to achieve very small output capacitor (< 500uF)</p>
 - Small output capacitor with interleave technology (~500uF for 150A)
 - Conventional: 8,400uF output capacitor
 - ➤ 100V MOSFET for SCC is cheap and almost no loss

OBC and DC/DC Solutions Using SCC Technology

EV On-board Charger (OBC)

	Current Design	Reported Design	GaNPower's Design I	GaNPower's Design II	
Size / Volume	3.2 Litre	2.2 Litre	1.2 Litre	0.6 - 0.8 Litre	
Power Density	1 kW / L	1.5 kW / L	2.5 - 3 kW / L	4 - 5.5 kW / L	
Weight	Proportional to volume				
Efficiency	92%-94%	95.7% 96.5%		98%	
Operating Temp Range	-45 - 105	-45 - 105	-45 - 105	-45 - 105	
Transient Speed	No need to be fast				
Reliability	Same	Same	Same	Same	
Durability	Same	Same Same		Same	
Power Devices / Cost	Large inductor	500V/200uF cap (\$56)	500V / 12uF cap (\$8)	500V / 12uF cap (\$8)	

Input : 85-265VAC, Output : 240-430VDC, 3.3KW, 14A

EV On-board DC/DC Converter

	Current Design	Reported Design	GaNPower's Design		
Size / Volume	1.8 Litre	1.3 Litre	0.7 Litre		
Power Density	0.7 - 1.1 kW / L	1.5 kW / L	3 - 4 kW / L		
Weight	Proportional to volume				
Efficiency	94 - 95%	95 - 96%	97%		
Operating Temp Range	-45 - 105	-45 - 105	-45 - 105		
Transient Speed	Same	Same	Same		
Reliability	Same	Same	Same		
Durability	Same	Same	Same		
Power Devices / Cost	MOSFET Large inductor	GaN 8,400uF cap	With GaN 500uF cap		

Input : 240-430VDC, Output : 9-16VDC , 2KW , 150A

4X increase of power density using GaNPower's GaN devices and SCC design

ର୍ବାପ୍ରାର୍ଦ୍ୱ

Contents

- ➢ Session 1: GaN devices basics
- ➢ Session 2: GaN Gate Driving
- ➢ Session 3: GaN Applications
 - ➢ GaN vs. Silicon, from application perspective
 - ➢ GaN Applications Survey
 - SCC Solution Demos (in collaboration with Digiq Power)
 - > A brief introduction to GaNPower International

o'gio

About GaNPower International Inc.

GaNPower Headquarters (Vancouver, Canada)

GaNPower was established in June, 2015 by a group of professionals in Vancouver, Canada

Ganpower Our Gan HEMT Products

Product Catalog	Current Ratings	Release date		
650V GaN HEMT (TO220)	10A , 15A , 20A , 30A	2018 Q1		
(GPI650 <mark>XX</mark> TO)	40A , 60A , 80A	2018 Q3 ~ 2019 Q2		
650V GaN HEMT (DFN 5X6) (GPI650 <mark>XX</mark> DFI)	7.5A , 10A , IC	2019 Q2		
650V GaN HEMT (DFN 6X8) (GPI650 <mark>XX</mark> DFO)	15A, 20A, 30A, IC	2018 Q2 ~ 2019 Q2		
650V GaN HEMT (DFN 8X8)	15A , 30A	2018 Q3		
(GPI650 <mark>XX</mark> DFN)	30A,60A,Co-package, Monolithic IC	2019 Q1 ~ 2020 Q3		
650V GaN HEMT (LGA)	10A , 15A , 20A , 30A	2018 Q3		
(iGaN650 <mark>XX</mark>)	LGA Half-bridge module: 60A , 120A	2019 Q3 ~ 2020 Q3		
1200V GaN HEMT (TO252 DPAK) (GPIHV <mark>XX</mark> DDK)	15A , 30A	2018 Q3 ~ 2019 Q2		
100V GaN HEMT (LGA) (iGaN100 <mark>XXX</mark>)	7.5A , 10A , 30A , 60A , 80A , 100A	2020 Q1 ~ 2021 Q1		

	GaNPower	Super Junction MOS	SiC	Cascode GaN	E-mode GaN
Product number	GPI65015TO	XXXXXXXC7	XXXXXXXB3	XXXXXXLD	XXXXXX4B
Rated BV	650V	700V	650V	600V	650V
R _{dson}	92mΩ	125mΩ	100mΩ	150mΩ	100 - 130mΩ
Qg	3.3nC	35nC	51nC	6nC	3nC
FOM=R _{dson} *Q _g	304	4375	5100	900	300 - 390

THANKS FOR WATCHING!

Contact us (Vancouver Headquarters) :

- (?) 230-3410 LOUGHEED HWY VANCOUVER, BC, V5M 2A4 CANADALGA
- 1.778.588.1119
- information@iganpower.com

联系我们 (Greater China Region)

- 中国江苏省苏州市工业园区纳米技术国家大学科技园F0411
- +86-512-65267027
- sales@iganpower.com

Ultra High Frequency Power Conversion

WWW.IGANPOWER.COM 230-3410 LOUGHEED HWY VANCOUVER, BC, V5M 2A4 CANADA