

GPI65015DFO

N-channel 650V 15A GaN Power HEMT in 6X8 DFN package

Datasheet version: 2.1

PAD - S

D 5 (

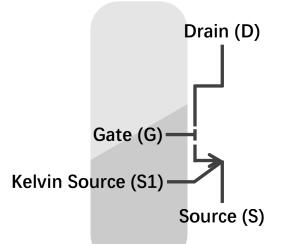
D 6 (

D 7

D 8 0

Features

BV _{dss}	R _{dson}	l _{ds}	Qg
650 V	85 mΩ	15 A	3.3 nC


- Ultra-low RDS(on)
- High dv/dt capability
- Extremely low input capacitance
- Zero Qrr
- Outstanding switching performance
- Low Profile

Applications

- Switching Power Applications
- Adapters, Quick Chargers

Description

These devices are N-channel 650 V Power GaN HEMTs based on proprietary E-mode GaN on silicon technology. The resulting product has extremely low on state resistance, very low input capacitance and zero reverse recovery charge making it especially suitable for applications which require superior power density, ultra-high switching frequency and outstanding efficiency.

4 G

3 S1

2 S

1 S

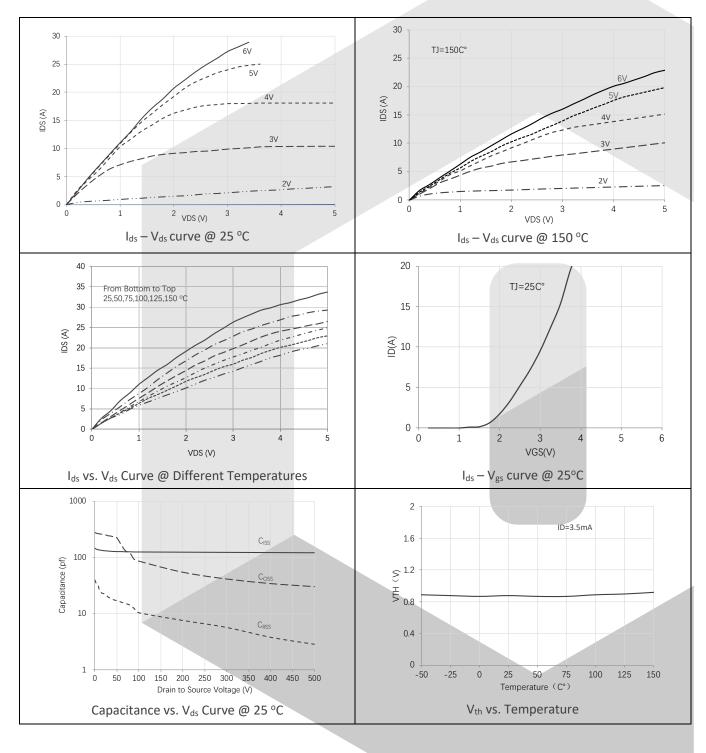
Device Characteristics

Static Parameters			Test data				
	Parameters		Conditions	Min	Typical	Max	Unit
1	V _{gs(TH)}	Gate threshold voltage	V _{ds} =V _{gs} Id=3.5mA	1.0	1.2	1.4	V
2	BV _{dss}	Drain-Source breakdown voltage	V _{gs} =0V I _d =25uA		650		V
3	l _{dss}	Zero gate voltage drain current, T _c = 25C°	V _{gs} =0V V _{ds} =650V		0.8	25	uA
4	l _{gss}	Gate-Source Leakage	V _{gs} = 6V V _{ds} =0V		13	50	uA
5	R_{dson}	Static drain-source on resistance, $T_c = 25C^{\circ}$	V _{gs} =6V I _d =2.5A		85	105	mΩ
6	V_{sd}	Reverse conduction voltage	I _{sd} =1A V _{gs} =0V	1.65	1.8	2.0	V
Dynamic Parameters		Test data					
	Parameters		Conditions	Min	Typical	Max	Unit
	C _{iss}	Input capacitance	V _{gs} =0V		123		pf
1	C _{oss}	Output capacitance	V _{ds} =400V f=1MHz		29		pf
	C _{rss}	Reverse transfer capacitance			4		pf
	Qg	Gate charge	V _{ds} =400V		3.34		nC
3	Q _{gs}	Gate to source charge	I _d =7.5A		0.53		nC
	Q _{gd}	Gate to drain charge	V _{gs} =6V		0.78		nC
2	Qrr	Reverse recovery charge			0		nC
Switching Performance			Test data				
	Parameters		Conditions	Min	Typical	Max	Unit
1	t _{d(on)}	Turn-on delay time	V _{ds} =400V		5.3		ns
2	tr	Rise time	$I_{d}=2.5A$		12		ns
3	t _{d(off)}	Turn-off delay time	R _g =10Ω		18		ns
		Fall time	V _{gs} =6V		13		

Absolute Max. Ratings

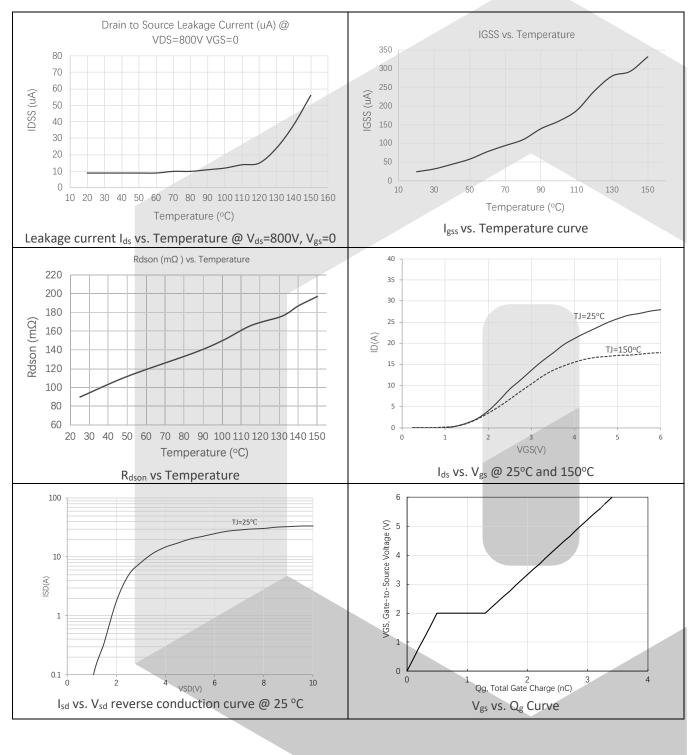
	Symbols	Parameters	Value	Unit
1	V _{DS-max}	Breakdown voltage transient @ T _{case} =25°C	800	V
2	V_{GS-max}	Gate to source max. transient voltage @ T _{case} =25°C	-12 to +7.5	V
3	I _{ds-max}	Drain to source DC current @ T _{case} =25°C	15	А
4	I _{ds-max}	Drain to source DC current @ T _{case} =100°C	12	А
5	dv/dt- _{max}	Drain to source voltage slew rate	200	V/nS
6	T _{J-max}	Max junction temperature	150	°C
7	T _{S-storage}	Storage temperature	-55 to 150	°C

Thermal and Soldering Characteristics (Typical)

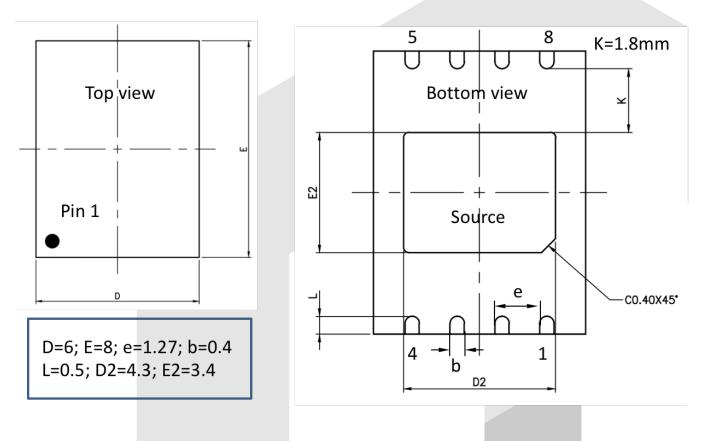

	Symbols	Parameters	Value	Unit
1	R_{thJC}	Thermal resistance (junction to case)	1.1	°C /W
2	T _{solder}	Reflow soldering temperature	250	°C

Ordering

Order Code	Package Type	Packaging Method	Qty	
GPI65015DFO	DFN surface mount, bottom cooled, 6X8 mm	Tape and Reel	3500	



Electrical Performance


For more information, visit us at: www.iganpower.com, or contact us at sales@iganpower.com

Package Information

8LEAD DFN(6x8x0.75MM,pitch 1.27 mm) (3.40 x 4.30 mm Exposed area) Bottom thermal pad and Pin 1,2,3=source ; pin 4=gate; pin 5,6,7,8=drain IMPORTANT: Please connect the bottom thermal pad to the source electrode on PCB

GaN HEMT Frequently Asked Questions

1	Q: Can we do pin to pin switch for silicon MOSFET or IGBT?			
	A: The short answer is no. GaN HEMT power devices are far superior than the best silicon			
	devices such as super junction MOSFETs. However, due to different requirements of gate			
	driving voltage and extremely high dv/dt slew rate, special drivers and optimized PCB layouts			
	are recommended to minimize the impact from circuit parasitics. Some packaging forms such			
	as GaNPower's DFN packaged devices offer both sense and force for the source terminal. Also,			
	for traditional TO220 packages, please be advised that the pins are arranged as Gate – Source			
	-Drain, and the thermal pad is connected to the source instead of drain.			
2	Q: Are GaN power devices reliable?			
	A: GaN power HEMTs have been tested by GaNPower and many other vendors, users and			
	testing facilities to be as reliable (if not better than) silicon counterparts.			
3	Q: How do GaN power devices compare with SiC?			
	A: Currently GaN power HEMT devices are most suitable for low to medium voltage (\leq 1200V)			
	and power (<20KW) applications. GaN is the ideal choice for high frequency applications. SiC			
	devices are better choice for high voltage and high-power applications (>20KW).			
4	Q: Do we need to parallel an FRD for applications such as inverters?			
	A: GaN devices are different from silicon MOSFET or IGBT in that they have no inherent PN			
	junction diodes that cause reverse recovery issue. User do not need to parallel an FRD for the			
	purpose of suppressing the body diode reverse recovery effect, since GaN HEMT can operate			
	in both first and third quadrants. However, care should be taken for the dead time power loss			
	since the Vsd voltage of GaN HEMT is usually close to 2V. This is especially true when a negative			
	gate voltage is applied.			
6	Q: Can we parallel GaN HEMT devices?			
	A: Yes, GaN HEMT is ideal for paralleling, due to positive temperature coefficient of Rdson			
-	and slightly positive temperature coefficient of threshold voltage.			
5	Q: Where can we find drivers for GaNPower HEMT devices?			
	A: While some of the GaNPower's HEMTs are either monolithically integrated with gate			
	driver or co-packaged with a silicon driver, drivers can be easily found from vendors such as			
	TI and Silicon Lab for either single sided or half-bridge configurations:			
	✓ <u>TI: LM5114</u> : Single 7.6A Peak Current Low-Side Gate Driver			
	✓ <u>TI: UCC27611</u> : 5V, 4A/6A Low Side GaN Driver			
	✓ <u>Maxim: MAX5048C</u> : 7A Sink/3A Source Current, 8ns, SOT23, MOSFET Drive			
	✓ <u>Fairchild: FAN3122</u> : Single 9-A High-Speed, Low-Side Gate Driver			
	✓ <u>Silicon Lab: Si827X</u> : 4 Amp ISO driver with High Transient (dv/dt) Immunity			